Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1355314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455059

RESUMO

Background: The aim of this study was to identify inflammatory biomarkers in traumatic proliferative vitreoretinopathy (TPVR) patients and further validate the expression curve of particular biomarkers in the rabbit TPVR model. Methods: The Olink Inflammation Panel was used to compare the differentially expressed proteins (DEPs) in the vitreous of TPVR patients 7-14 days after open globe injury (OGI) (N = 19) and macular hole patients (N = 22), followed by correlation analysis between DEPs and clinical signs, protein-protein interaction (PPI) analysis, area under the receiver operating characteristic curve (AUC) analysis, and function enrichment analysis. A TPVR rabbit model was established and expression levels of candidate interleukin family members (IL-6, IL-7, and IL-33) were measured by enzyme-linked immunosorbent assay (ELISA) at 0, 1, 3, 7, 10, 14, and 28 days after OGI. Results: Forty-eight DEPs were detected between the two groups. Correlation analysis showed that CXCL5, EN-RAGE, IL-7, ADA, CD5, CCL25, CASP8, TWEAK, and IL-33 were significantly correlated with clinical signs including ocular wound characteristics, PVR scoring, PVR recurrence, and final visual acuity (R = 0.467-0.699, p < 0.05), and all with optimal AUC values (0.7344-1). Correlations between DEP analysis and PPI analysis further verified that IL-6, IL-7, IL-8, IL-33, HGF, and CXCL5 were highly interactive (combined score: 0.669-0.983). These DEPs were enriched in novel pathways such as cancer signaling pathway (N = 14, p < 0.000). Vitreous levels of IL-6, IL-7, and IL-33 in the rabbit TPVR model displayed consistency with the trend in Olink data, all exhibiting marked differential expression 1 day following the OGI. Conclusion: IL-7, IL-33, EN-RAGE, TWEAK, CXCL5, and CD5 may be potential biomarkers for TPVR pathogenesis and prognosis, and early post-injury may be an ideal time for TPVR intervention targeting interleukin family biomarkers.


Assuntos
Vitreorretinopatia Proliferativa , Humanos , Coelhos , Animais , Vitreorretinopatia Proliferativa/diagnóstico , Vitreorretinopatia Proliferativa/etiologia , Vitreorretinopatia Proliferativa/metabolismo , Corpo Vítreo/metabolismo , Interleucina-33/metabolismo , Interleucina-6/metabolismo , Interleucina-7/metabolismo , Proteômica , Prognóstico , Biomarcadores/metabolismo
2.
BMC Cancer ; 24(1): 270, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408977

RESUMO

BACKGROUND: Previous studies have observed a link between immunophenotypes and lung cancer, both of which are closely associated with genetic factors. However, the causal relationship between them remains unclear. METHODS: Bidirectional Mendelian randomization (MR) was performed on publicly available genome-wide association study (GWAS) summary statistics to analyze the causal relationships between 731 immunophenotypes and lung cancer. Sensitivity analyses were conducted to verify the robustness, heterogeneity, and potential horizontal pleiotropy of our findings. RESULTS: Following Bonferroni adjustment, CD14- CD16+ monocyte (OR = 0.930, 95%CI 0.900-0.960, P = 8.648 × 10- 6, PBonferroni = 0.006) and CD27 on CD24+ CD27+ B cells (OR = 1.036, 95%CI 1.020-1.053, P = 1.595 × 10 - 5, PBonferroni = 0.012) were identified as having a causal role in lung cancer via the inverse variance weighted (IVW) method. At a more relaxed threshold, CD27 on IgD+ CD24+ B cell (OR = 1.035, 95%CI 1.017-1.053, P = 8.666 × 10- 5, PBonferroni = 0.063) and CD27 on switched memory B cell (OR = 1.037, 95%CI 1.018-1.056, P = 1.154 × 10- 4, PBonferroni = 0.084) were further identified. No statistically significant effects of lung cancer on immunophenotypes were found. CONCLUSIONS: The elevated level of CD14- CD16+ monocytes was a protective factor against lung cancer. Conversely, CD27 on CD24+ CD27+ B cell was a risk factor. CD27 on class-switched memory B cells and IgD+ CD24+ B cells were potential risk factors for lung cancer. This research enhanced our comprehension of the interplay between immune responses and lung cancer risk. Additionally, these findings offer valuable perspectives for the development of immunologically oriented therapeutic strategies.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Causalidade , Fatores de Risco
3.
J Sep Sci ; 47(3): e2300670, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356230

RESUMO

Zanthoxylum, as a medicinal and edible herbal medicine, has a long history and complex chemical composition. There are many varieties of Zanthoxylum, and there are differences in composition between varieties. In this study, a rapid classification and identification method for the main components of Zanthoxylum was established using ultra-high-performance-liquid chromatography quadrupole-orbitrap-mass spectrometry. The components of Shandong Zanthoxylum bungeanum, Wudu Zanthoxylum bungeanum, and Zanthoxylum schinifolium were identified by studying the characteristic fragmentations and neutral losses of characteristic components. A total of 48 common components and 24 different components were identified and the fragmentation patterns of the main components, such as flavonoids, alkaloids, and organic acids were summarized. These findings provided a reference for the study of pharmacodynamic substance basis and quality control of different varieties of Zanthoxylum.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Plantas Medicinais , Zanthoxylum , Zanthoxylum/química , Plantas Medicinais/química , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão
4.
Biomark Res ; 12(1): 9, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245774

RESUMO

Uncontrolled productive infection of BK polyomaviruses (BKV) in immunocompromised patients was reported to result in serious diseases, especially renourinary malignancies. However, the mechanism of BKV as a role of human carcinogen is still unknown. In this study, we showed that there is a significant association between BKV infection and metastasis of urothelial carcinoma (UCA). BKV-infected tumor tissues exhibit invasive histologic phenomena with vascular invasion and myometrial invasion. Then we identified that BKV promotes UCA invasion in a mode of dual regulation of tumor cells (TCs) invasion and endothelial cells (ECs) adhesion by encoding miRNAs. In cancer cells, BKV-B1-miR-5p promotes cell motility and invasiveness by directly targeting CLDN1. Moreover, exosomal-BKV-B1-miR-3p derived from BK-infected BC cells would be transferred to ECs and increase its adhesion to tumor cells by switching on the CLDN1 enhancer, which subsequently destroyed endothelial monolayers and increased permeability. In a human urothelial cancer metastasis mouse model, BK-inoculated cells exhibited higher incidence of vascular leakage and liver colonization. However, the vascular leakage and liver metastasis could be reduced when knocking down miRNAs in BK-inoculated cells. Our research delineates the bifunctional impact of BKV-encoded microRNAs on the expression of CLDN1 within both TCs and ECs, which orchestrates the establishment of a pre-metastatic niche in UCA.

5.
Int Immunopharmacol ; 127: 111426, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38147776

RESUMO

Pulmonary alveolar epithelial cell injury is considered the main pathological and physiological change in acute lung injury. Ferroptosis in alveolar epithelial cells is one of crucial factors contributing to acute lung injury (ALI). Therefore, reducing ferroptosis and repair epithelial barrier is very necessary. More and more evidence suggested that FGF10 plays an important role in lung development and repair after injury. However, the relationship between FGF10 and ferroptosis remains unclear. This study aims to explore the regulatory role of FGF10 on ferroptosis in ALI. Differential gene expression analysis indicated that genes associated with ferroptosis showed that FGF10 can significantly alleviate LPS induced lung injury and epithelial barrier damage by decreasing levels of malonaldehyde(MDA), and lipid ROS. SIRT1 activator (Resveratrol) and inhibitor (EX527) are used in vivo showed that FGF10 protects ferroptosis of pulmonary epithelial cells through SIRT1 signal. Furthermore, knockdown of FGFR2 gene reduced the protective effect of FGF10 on acute lung injury in mice and SIRT1 activation. After the application of NRF2 inhibitor ML385 in vitro, the results showed that SIRT1 regulated the expression of ferroptosis related proteins NRF2, GPX4 and FTH1 are related to activation of NRF2. These data indicate that SIRT-ferroptosis was one of the critical mechanisms contributing to LPS-induced ALI. FGF10 is promising as a therapeutic candidate against ALI through inhibiting ferroptosis.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2/genética , Sirtuína 1/genética
6.
Bone Res ; 11(1): 65, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123549

RESUMO

The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.


Assuntos
Doenças Ósseas , Engenharia Tecidual , Humanos , Materiais Biocompatíveis/metabolismo , Osso e Ossos/metabolismo , Neurogênese
7.
J Mass Spectrom ; 58(11): e4978, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37946617

RESUMO

Leonurus japonicus Houtt (LJH) is a bulk medicinal material commonly used in clinical practice, but its complex constituents have not been completely understood, posing challenges to pharmacology, pharmacokinetic research, and scientific and rational drug use. As a result, it is critical to develop an efficient and accurate method for classifying and identifying the chemical composition of LJH. In this study, ultra-performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry (UPLC-Q-Orbitrap-MS) was successfully established, along with two data post-processing techniques, characteristic fragmentations (CFs) and neutral losses (NLs), to quickly classify and identify the chemical constituents in LJH. As a result, 44 constituents of LJH were identified, including four alkaloids, 20 flavonoids, two phenylpropanoids, 17 organic acids, and one amino acid. The method in this paper enables classification and identification of chemical compositions rapidly, providing a scientific foundation for further research on the effective and toxic substances of LJH.


Assuntos
Medicamentos de Ervas Chinesas , Leonurus , Medicamentos de Ervas Chinesas/química , Leonurus/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/química
8.
Gut Microbes ; 15(2): 2282790, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992400

RESUMO

Numerous studies have described the notable impact of gut microbiota on the brain in Alzheimer's disease (AD) via the gut - brain axis. However, the molecular mechanisms underlying the involvement of gut microbiota in the development of AD are limited. This study aimed to explore the potential mechanisms of gut microbiota in AD by integrating multi-omics data. In this study, APP/PS1 and WT mice at nine months of age were used as study mouse model. Cognitive function was assessed using the Morris water maze test. The levels of Aß plaque and neuroinflammation in the brain were detected using immunofluorescence and PET/CT. In addition, we not only used 16S rRNA gene sequencing and metabolomics to explore the variation characteristics of gut microbiota and serum metabolism abundance, but also combined spatial metabolomics and transcriptomics to explore the change in the brain and identify their potential correlation. APP/PS1 mice showed significant cognitive impairment and amyloid-ß deposits in the brain. The abundance of gut microbiota was significantly changed in APP/PS1 mice, including decreased Desulfoviobrio, Enterococcus, Turicibacter, and Ruminococcus and increased Pseudomonas. The integration of serum untargeted metabolomics and brain spatial metabolomics showed that glycerophospholipid metabolism was a common alteration pathway in APP/PS1 mice. Significant proliferation and activation of astrocyte and microglia were observed in APP/PS1 mice, accompanied by alterations in immune pathways. Integration analysis and fecal microbiota transplantation (FMT) intervention revealed potential association of gut microbiota, host glycerophospholipid metabolism, and neuroinflammation levels in APP/PS1 mice.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Doenças Neuroinflamatórias , RNA Ribossômico 16S/genética , Multiômica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Doença de Alzheimer/complicações , Glicerofosfolipídeos , Modelos Animais de Doenças
9.
Nat Prod Res ; : 1-8, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950736

RESUMO

As a compound preparation of traditional Chinese medicine, Jianwei Xiaoshi Tablets (JXT) is made from five Chinese herbs: Taizishen (Pseudostellariae Radix), Chenpi (Citri Reticulatae Pericarpium), Shanyao (Dioscoreae Rhizoma), Maiya (Hordei Fructus Germinatus) and Shanzha (Crataegi Fructus). It is mainly used to treat dyspepsia. However, the chemical composition of JXT is complex and unclear. In this study, ultra performance liquid chromatography-quadrupole-orbitrap-mass spectrometry and data post-processing technologies were used to analyse the samples of JXT. Firstly, the mass spectrometric information of the main components of five traditional Chinese herbs in JXT was summarised and a compound database was established. Then, the mass spectrometric data detected by the prepared samples was compared with the database. Finally, 93 chemical components were successfully identified, including 6 amino acids, 34 flavonoids, 18 alkaloids, 15 organic acids, 9 cyclic peptides and 11 other components, and the rapid classification and identification of chemical components of JXT were realised.

11.
J Sep Sci ; 46(20): e2300466, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37599277

RESUMO

Schisandra chinensis is a traditional Chinese medicine, which has played an important role in the field of medicine and food. In this study, ultra-high-performance liquid chromatography quadrupole-orbitrap-mass spectrometry was used to rapidly classify and identify the chemical compositions. Note that 32, 28, and 30 kinds of compounds were successfully identified from northern Schisandra chinensis, vinegar-processed Schisandra chinensis, and wine-processed Schisandra chinensis, respectively. The cleavage patterns of various components including lignans, organic acids, flavonoids, and terpenoids were summarized, and the effects of different processing methods on Schisandra chinensis were analyzed through chemical composition. This method realized the rapid classification and identification of raw Schisandra chinensis and two different processed products, and provided references for improving the traditional processing methods, strengthening quality control, and ensuring safe clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Lignanas , Schisandra , Cromatografia Líquida de Alta Pressão/métodos , Schisandra/química , Lignanas/análise , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas em Tandem/métodos
12.
Mol Neurobiol ; 60(10): 5548-5556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322288

RESUMO

Alzheimer's disease (AD) is the most common type of neurodegenerative disease and its pathogenesis is still unclear. Genetic factors are thought to account for a large proportion of the overall AD phenotypes. ATP-binding cassette transporter A7 (ABCA7) is one of the most important risk gene for AD. Multiple forms of ABCA7 variants significantly increase the risk of AD, such as single-nucleotide polymorphisms, premature termination codon variants, missense variants, variable number tandem repeat, mutations, and alternative splicing. AD patients with ABCA7 variants usually exhibit typical clinical and pathological features of traditional AD with a wide age of onset range. ABCA7 variants can alter ABCA7 protein expression levels and protein structure to affect protein functions such as abnormal lipid metabolism, amyloid precursor protein (APP) processing, and immune cell function. Specifically, ABCA7 deficiency can cause neuronal apoptosis by inducing endoplasmic reticulum stress through the PERK/eIF2α pathway. Second, ABCA7 deficiency can increase Aß production by upregulating the SREBP2/BACE1 pathway and promoting APP endocytosis. In addition, the ability of microglia to phagocytose and degrade Aß is destroyed by ABCA7 deficiency, leading to reduced clearance of Aß. Finally, disturbance of lipid metabolism may also be an important method by which ABCA7 variants influence the incidence rate of AD. In the future, more attention should be given to different ABCA7 variants and ABCA7 targeted therapies for AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptídeos beta-Amiloides/metabolismo
13.
Mater Today Bio ; 20: 100616, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37025556

RESUMO

Diabetic wounds always have puzzled patients and caused serious social problems. Due to the lack of local blood vessels, severe hypoxia is generated in the defect area, which is an essential reason for the difficulty of wound healing. We have constructed a photocatalytic oxygen evolution and antibacterial biomimetic repair membrane to solve the problems of wound repair. A scanning electron microscope and transmission electron microscope characterized the biomimetic repair membrane. The oxygen evolution of the biomimetic membrane was tested by an oxygen meter. The excellent antibacterial performance of the biomimetic repair membrane was also verified by co-culture with Staphylococcus aureus and Escherichia coli. It was confirmed that the expression of collagen and HIF1-α in fibroblasts was significantly increased in vitro. And the mitochondrial activity of the vascular and nerve was increased considerably. In vivo, the healing time of diabetes wounds treated with the biomimetic repair membrane was significantly reduced, the collagen and the number of pores were increased considerably, and vascular regeneration was enhanced. The biomimetic repair membrane has an excellent performance in photocatalytic oxygen evolution and antibacterial and can significantly promote the repair of diabetes wounds. This will provide a promising treatment for diabetes wound repair.

14.
Nat Commun ; 14(1): 1161, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859428

RESUMO

Ischemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The role of N6-methyladenosine (m6A) modification in AKI remains unclear. Here, we characterize the role of AlkB homolog 5 (ALKBH5) and m6A modification in an I/R-induced renal injury model in male mice. Alkbh5-knockout mice exhibit milder pathological damage and better renal function than wild-type mice post-IRI, whereas Alkbh5-knockin mice show contrary results. Also conditional knockout of Alkbh5 in the tubular epithelial cells alleviates I/R-induced AKI and fibrosis. CCL28 is identified as a target of ALKBH5. Furthermore, Ccl28 mRNA stability increases with Alkbh5 deficiency, mediating by the binding of insulin-like growth factor 2 binding protein 2. Treg recruitment is upregulated and inflammatory cells are inhibited by the increased CCL28 level in IRI-Alkbh5fl/flKspCre mice. The ALKBH5 inhibitor IOX1 exhibits protective effects against I/R-induced AKI. In summary, inhibition of ALKBH5 promotes the m6A modifications of Ccl28 mRNA, enhancing its stability, and regulating the Treg/inflammatory cell axis. ALKBH5 and this axis is a potential AKI treatment target.


Assuntos
Injúria Renal Aguda , Homólogo AlkB 5 da RNA Desmetilase , Quimiocinas CC , Linfócitos T Reguladores , Animais , Masculino , Camundongos , Rim/fisiologia , Camundongos Knockout , Homólogo AlkB 5 da RNA Desmetilase/genética
15.
BMC Oral Health ; 23(1): 65, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732724

RESUMO

BACKGROUND: The study aimed to compare the dentoskeletal effects of Vanbeek Activator, Herbst, Twin-Block and Mandibular Advancement with clear aligners in children with skeletal Class II malocclusions. METHODS: A sample with sixty-three patients (37 males, 26 females) was included and divided into untreated control group (C, n = 12), Vanbeek Activator group (V, n = 14), Herbst group (H, n = 11), Twin-Block group (TB, n = 12) and MA group (MA, n = 14). Cephalometric analysis and Johnston Pitchfork analysis were performed to quantify the skeletal and dentoalveolar components in molar relationship and overjet correction. Compare the differences of cephalometric data and Johnston-analysis data. RESULTS: The treatment changes showed significant differences in SNB, FH-NP, NA-PA, Co-Go, Co-Pog, ANB, lower facial height ratio, U1-PP, U6-PP, L1-MP and U1-L1. All the appliances improved overjet relationships significantly (Vanbeek, Herbst, Twin-Block and MA were 2.77 mm, 5.53 mm, 4.73 mm and 3.66 mm respectively) with significant retraction of maxillary incisors. The lower incisor displacement of group V and MA was negative, while that of group H and TB was positive and there were significant differences. Molar relationships were also improved by 3.45 mm, 6.85 mm, 3.48 mm and 0.92 mm for Vanbeek, Herbst, Twin-Block and MA. Mandible displacement showed a trend of group H > TB > V > MA. The displacement of maxillary molars in group H was greater than that in group C, TB and MA, and that of mandibular ones was greater than that in group C, V and MA, significantly. Herbst, Twin-Block and MA have more significant dentoalveolar effect than Vanbeek, while Vanbeek has more skeletal effect than the others especially in restraining maxillary growth. CONCLUSIONS: Four appliances are all effective in mandibular advancement, modification of class II molar relationship and deep overjet, with unavoidable increase in lower facial ratio. Vanbeek Activator has the most skeletal effects. Vanbeek and MA have a good control of mandibular incisors while more compensatory lower incisors proclination in Herbst and Twin-Block. Herbst has greater maxillary molar distalization. MA allows aligning and leveling meanwhile leading the mandible forward.


Assuntos
Má Oclusão Classe II de Angle , Avanço Mandibular , Aparelhos Ortodônticos Funcionais , Aparelhos Ortodônticos Removíveis , Masculino , Feminino , Criança , Humanos , Resultado do Tratamento , Má Oclusão Classe II de Angle/terapia , Mandíbula , Cefalometria , Incisivo
16.
RSC Med Chem ; 13(9): 1082-1099, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36324491

RESUMO

Aberrant activation of the PI3K/AKT pathway is considered in many malignant tumors and plays a crucial role in mediating malignancy progression, metastasis, and chemoresistance. Consequently, development of PI3K/AKT pathway targeted drugs is currently an attractive research field for tumor treatment. In this study, twenty-six flavonoid-based amide derivatives were synthesized and evaluated for their antiproliferation effects against seven cancer cell lines, including MDA-MB-231, MCF-7, HCC1937, A549, HepG2, GTL-16 and HeLa. Among them, compound 7t possessed the best specific cytotoxicity against triple negative breast cancer MDA-MB-231 cells with an IC50 value of 1.76 ± 0.91 µM and also presented inhibitory ability on clonal-formation, migration and invasion of MDA-MB-231 cells. Further cell-based mechanistic studies demonstrated that compound 7t caused cell cycle arrest of MDA-MB-231 cells at the G0/G1 phase and induced apoptosis. Meanwhile, the western blot assay revealed that compound 7t could down-regulate the expression of p-PI3K, p-AKT, and Bcl-2 and up-regulate the production of PTEN, Bax, and caspase-3. Molecular docking also showed a possible binding mode of 7t with PI3Kα. Together, compound 7t was eligible as a potential TNBC therapeutic candidate for further development.

17.
World J Gastroenterol ; 28(38): 5547-5556, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36304085

RESUMO

The incidence of frailty gradually increases with age. This condition places a heavy burden on modern society, of which the aging population is increasing. Frailty is one of the most complicated clinical syndromes; thus, it is difficult to uncover its underlying mechanisms. Oxidative stress (OS) is involved in frailty in multiple ways. The association between the gut microbiota (GM) and frailty was recently reported. Herein, we propose that OS is involved in the association between the GM and the occurrence of frailty syndrome. An imbalance between oxidation and antioxidants can eventually lead to frailty, and the GM probably participates in this process through the production of reactive oxygen species. On the other hand, OS can disturb the GM. Such dysbiosis consequently induces or exacerbates tissue damage, leading to the occurrence of frailty syndrome. Finally, we discuss the possibility of improving frailty by intervening in the vicious cycle between the imbalance of OS and dysbiosis.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Humanos , Idoso , Fragilidade/epidemiologia , Idoso Fragilizado , Disbiose , Estresse Oxidativo
18.
Int J Mol Sci ; 23(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628632

RESUMO

The efficiency and accuracy of the synthesis of structural lipids are closely related to the regiospecificity of lipases. Understanding the structural mechanism of their regiospecificity contributes to the regiospecific redesign of lipases for meeting the technological innovation needs. Here, we used a thermostable lipase from Streptomyces sp. W007 (MAS1), which has been recently reported to show great potential in industry, to gain an insight into the structural basis of its regiospecificity by molecular modelling and mutagenesis experiments. The results indicated that increasing the steric hindrance of the site for binding a non-reactive carbonyl group of TAGs could transform the non-specific MAS1 to a α-specific lipase, such as the mutants G40E, G40F, G40Q, G40R, G40W, G40Y, N45Y, H108W and T237Y (PSI > 80). In addition, altering the local polarity of the site as well as the conformational stability of its composing residues could also impact the regiospecificity. Our present study could not only aid the rational design of the regiospecificity of lipases, but open avenues of exploration for further industrial applications of lipases.


Assuntos
Streptomyces , Lipase/metabolismo , Modelos Moleculares , Streptomyces/metabolismo
19.
Front Cell Infect Microbiol ; 12: 803082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360115

RESUMO

Frailty is a complicated syndrome that occurs at various ages, with highest incidence in aged populations, suggesting associations between the pathogenesis of frailty and age-related changes. Gut microbiota (GM) diversity and abundance change with age, accompanied by increased levels of trimethylamine oxide (TMAO), a systemic inflammation-inducing GM metabolite. Thus, we hypothesized that TMAO may be involved in the development of frailty. We successfully established and verified a novel model of frailty in adult mice based on a 4-week intraperitoneal injection regime of TMAO followed by LPS challenge. The frailty index significantly increased in TMAO-treated mice after LPS challenge. TMAO also decreased claudin-1 immunofluorescent staining intensity in the jejunum, ileum, and colon, indicating that the destruction of intestinal wall integrity may increase vulnerability to exogenous pathogens and invoke frailty. 16S sequencing showed that TMAO significantly reduced the GM Firmicutes/Bacteroidetes (F/B) ratio, but not α-diversity. Interestingly, after LPS challenge, more genera of bacterial taxa were differently altered in the control mice than in the TMAO-treated mice. We infer that a variety of GM participate in the maintenance of homeostasis, whereas TMAO could blunt the GM and impair the ability to recover from pathogens, which may explain the continuous increase in the frailty index in TMAO-treated mice after LPS challenge. TMAO also significantly increased serum imidazole metabolites, and led to different patterns of change in serum peptide and phenylpropanoid metabolites after LPS stimulation. These changes indicate that glucose metabolism may be one mechanism by which GM inactivation causes frailty. In conclusion, TMAO leads to frailty by destroying intestinal barrier integrity and blunting the GM response.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Animais , Bactérias/genética , Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Metilaminas , Camundongos
20.
J Phys Chem Lett ; 12(13): 3328-3334, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33769820

RESUMO

ZnZrO ternary oxide represents a prominent catalytic system, identified recently for syngas conversion and CO2 reduction via OX-ZEO technology. One intriguing observation of the ZnZrO catalyst is the very low amount of Zn required for achieving high activity, which challenges the current views on the active site of binary oxide catalysts. Herein, we demonstrate, via machine-learning-based atomic simulation, that the structure evolution of the ZnZrO system in synthesis can be traced from bulk to surface, which leads to the identification of the active site of the ZnZrO catalyst. Theory shows that an unprecedented single-layer Zn-O structure can adhere strongly to the monoclinic ZrO2 minority (001) surface, forming a stable oxide-on-oxide interface Zn-O/M(001). The single-layer Zn-O can convert syngas to methanol with a high turnover frequency (7.38 s-1) from microkinetics simulation. Electron structure analyses reveal that the pentahedron [ZnO4] in Zn-O/M(001) enhances the surface electron donation to promote the catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...